貯水池における太陽紫外線量評価

田中 奈央*, 福田 和悟**

Estimation of sunlight UV-rays volume at a reservoir

TANAKA Nao*, FUKUDA Yasunori**

Abstract

Thermoluminescence phosphors available for the estimation of ultraviole (UV) irradiation dose are examined. A several kind of lanthanide elements are doped in pure CaF₂ powder crystals and properties of the TL to UV radiation are observed. It is found that the TL intensity from the sintered CaF₂ doped with Tb₄O₇ is the highest among the samples doped other lanthanide elements. And It is also found that the TL peak intensity of CaF₂ : Tb become strong by addition of Sm₂O₃ and Gd₂O₃. The 146°C peak intensity of CaF₂ : Tb,Sm,Gd increases with the UV irradiation dose, and the 146°C peak may also be suitable for use as a dosimeter. In the present study, the seasonal change in the amount of sunlight UV at the reservoir was measured with the sintered CaF₂ : Tb,Sm,Gd phosphor.

Key words: Thermoluminescence (TL), CaF₂, Ultraviolet irradiation dose, Dosimeter, Sunlight

1. はじめに

近年,地球環境問題の1つとしてフロンなどによるオゾン層の破壊が挙げられている。この ことは、オゾンホールが形成され、有害な太陽紫外線UV-B(波長 λ :280nm~315nm)が地 球に到達するようになるからであり、人体に対して皮膚がん、白内障、免疫力減退などの影 響を及ぼすとされる有害なUV-Bによる植物への影響についても研究が行われている(H.Hama-Inaba *et al.*, 2001; M. Bala *et al.*, 2001; J. Hidema *et al.*, 2001; J. Kim *et al.*, 2001)。筆者ら

平成22年10月29日 原稿受理

^{*}元 大阪産業大学 人間環境学部 都市環境学科 現 北浜製作所㈱

^{**} 大阪産業大学 人間環境学部 生活環境学科

は、CaF₂にTb₄O₇を添加したCaF₂:Tb焼結体が医療などで使われるUV-C(λ < 280nm)お よびUV-B紫外線に対して非常に高い熱蛍光(TL)感度を有することを低圧水銀灯(λ= 253.7 nm, L937Low pressure Hg lamp, Hamamatsu Photonics Co. Ltd.) および太陽紫外線照 射に対するTL特性から熱蛍光線量計(TLD)素子として使用できることを報告し(H.Ohtaki et al., 1994; Y.Fukuda et al., 1996; 福田 他, 1998; Y.Fukuda et al., 1999; Y.Fukuda et al., 2002;福田2005, Y.Fukuda et al., 2006), また, 人体の骨や歯の主成分であるCa₅(PO₄)₃Fに Tb4O7を添加したCa5(PO4)3F:Tb焼結体が紫外線UV-Cに対応するTLDとして使用できること を報告している(Y.Fukuda et al. 1997; Y.Fukuda et al. 2000)。特に有害な太陽紫外線UV-Bが. 水生植物(プランクトン、藻類)など光合成を行う生命体に与える影響を調べることを目的に CaF2: Tb焼結体を用いて、貯水池中の太陽紫外線量と貯水池の水質(クロロフィル a の量な ど)の季節変化を調べ.水中における太陽紫外線量が5月から8月にかけて上昇するのに応じ て、クロロフィルaの量が増加し、9月、10月と太陽紫外線量の下降に応じて、クロロフィル aの量も減少していることから、貯水池中の太陽紫外線量の季節変化と貯水池の水質(クロロ フィル a の量)の季節変化が対応していることを報告している(Y.Fukuda et al., 1999)。しかし、 この報告では、実際に水中で藻類などが受ける太陽紫外線量(紫外線エネルギー:例えば、µ W/mあるいはµW・h/m)を表すものでなく、水中での太陽紫外線量の季節的変化に対応し たTLD素子のTLピーク強度(任意単位:arb. unit)であった。また、実際に測定対象とする 貯水池の状態から、水生植物が受ける太陽紫外線量を調べるためには、TLD素子の感度を上 昇させる必要があった。そこで,新たにCaF₂にTb₄OァおよびSm₂O₃を添加したCaF₂:Tb,Sm焼 結体を作成し、そのTL特性を調べた結果、TLDの発光量と紫外線照射時間との関係からTLD 素子に照射したUV-C紫外線量(波長253.7nm)を評価できること.測定した励起スペクトル のピーク(TLD素子の吸収帯に対応)が277nmに現れ、UV-B、UV-Cに対応出来ること、そ して観測される発光スペクトルがTb³⁺イオン特有のものであるので, Tb₄O₇およびSm₂O₃の2 種類の活性体を母体のCaF2に添加した場合、Tb³⁺イオンの発光強度がSm³⁺イオンとのco-dope によって強められ、CaF2: Tb焼結体よりもTL感度が12.9倍改善されること等を報告してきた (Y.Fukuda 2002;福田 2005;Y.Fukuda *et al.*, 2006;福田 2009)。

本稿では、Tb₄O₇およびSm₂O₃の 2 種類の活性体に更にGd₂O₃を添加したCaF₂: Tb,Sm,Gd焼 結体(Y.Fukuda 2008)の励起スペクトルのピークが280nmに現れ、UV-B 測定において改良 されていることから、このCaF₂: Tb,Sm,Gd焼結体を用いて、水中の太陽紫外線量を任意単位 ではなく、どれだけのエネルギーの太陽紫外線UV-Bを受けているのか測定し(μ W・h/m²)、 四条畷市にある大阪府民の森の貯水池の一つ、砂溜池において、水生生物との関係を調べるこ とを計画した。この目的のために、砂溜池の堤(地表)における太陽紫外線量(UV-Bの照射 エネルギー: μ W・h/m²)をUV-B測定装置で測定するとともに太陽紫外線をCaF₂: Tb,Sm,Gd

92

焼結体(TLD素子)に被曝させて、地表での太陽紫外線量に対するTLD素子の発光量との関係を求め、この関係を用いて、砂溜池水中におかれたTLD素子の発光量より、水中で水生生物が受ける実際の太陽紫外線量を求めることを試みた。測定地の砂溜池では、2008年突然、在来種の水生植物であるジュンサイが絶滅し、その原因として水質の悪化などが考えられることから、測定地として選んだ。

2. 測定

2.1 測定地

四条畷市にある大阪府民の森, むろいけ園地の砂溜池は, 生駒山系北部の標高約300mに位 置する金剛生駒国定公園内にある。2008年, 砂溜池のジュンサイが突然, 絶滅した。 砂溜池 のpHの値は2007年度において6.8付近の弱酸性であったのが, 2008年度には, 7.6とアルカリ性 となってジュンサイにとって悪い環境になっていることが分かっている。また, 2008年12月に おける池干しの結果, 魚では外来種のブルギルが大量に繁殖していること, また, 植物ではハ ゴロモモ, オオカナダモの外来種が在来種のジュンサイにとって換わって繁殖していることが 明らかとなった。この池干し後, 2009年にはpHの値が, 6.8付近へと以前の状態に戻ったが, ジュ ンサイの地下茎からの新たな発芽は, 見られなかった。

Fig.1 むろいけ園地内にある砂溜池

現在,われわれは,在来種のジュンサイが繁殖する砂溜池の環境を取り戻すためにジュンサ イの地下茎を移植することを計画している。地下茎を覆っている土壌表面にどの程度の太陽紫 外線量が届いているのかを知るために,ジュンサイが生息していた地点の状況から,水深1.3 と1m付近の太陽紫外線量測定することとした。この水深で他の藻類などがどの程度の太陽光 (紫外線を含む)を受けて,光合成を行い生息しているのかの情報を得ることになる。また, 水温とともに水生生物と関係のあるDOについても観測することとした。

2.2 測定原理

熱蛍光(Thermoluminescence略してTL)は、低温でX線、y線、B線などによってエネル ギーを与えられた蛍光体に熱刺激を与えるときに発光(熱蛍光)を生じる現象である。ルミネッ センスは、そのほとんどが不純物あるいは格子欠陥に関係した電子状態間の遷移によって起こ る。特に蛍光体においては故意に微量の不純物原子(活性化原子:activator)を添加すること が多い。約10eVの紫外線、10~100KeV のX線、1.25MeVのy線などの照射によって結晶内に つくられた電子と正孔は、再結合する前に再結合の起こり難い格子欠陥に捕らえられて、準安 定状態になることが多く,発光の起こる格子欠陥は発光中心あるいは蛍光中心と呼ぶ。TLは, 発光中心(エネルギーを光として放出する再結合中心でもある)の準安定状態.あるいは母体 結晶の準安定状態になる格子欠陥に捕らえられた電子。あるいは正孔が熱刺激によって開放さ れて起こす再結合発光である。紫外線、X線、γ線、β線の照射によって生じた準安定状態に ある電子あるいは正孔の数は、照射線量に比例し、電子あるいは正孔が準安定状態にあること は、照射線量の記憶状態にあると言える。この記憶された照射線量が自然光や周囲の熱的刺 激(保存温度)によって変わらないとき.人工的に温度を上昇させて蛍光体に記憶されている 線量をTL強度と温度との関係を描いたTLグロー曲線の解析から知ることができる。この様に TL強度が照射線量あるいは吸収線量に比例することから、元の線量を評価する熱蛍光線量計 (Thermoluminescence Dosimeter.略してTLD) は二次線量計と呼ばれる。

2.3 TLD試料および測定法

測定に用いたTLD試料のCaF₂: Tb,Sm,Gd焼結体はCaF₂粉末(レア・メタル社製,純度 99.99%)にTb₄O₇(レア・メタル社製,純度99.99%)を0.06wt%,Sm₂O₃(レア・メタル社製, 純度99.99%)を0.03wt%,Gd₂O₃を0.36wt%添加した後,直径6mm,厚さ0.7mmの円盤状に 整形し,大気中において1100℃で2時間保持して焼結させたものである。

紫外線透過率90%以上の合成石英ガラスで製作した直径10mm,高さ15mmの円筒形容器 (Fig.2:側面に釣り糸を取り付けるため3個の輪がつけてある)内にTLD試料を入れゴム栓 で封入した。試料を封入した石英容器に釣り糸を付け,砂溜池の水深1.0mおよび1.3mに設置

94

し、13時から14時までの1時間に太陽紫外線を照射さ せた。太陽紫外線照射後、石英容器より取り出した TLD試料をアルミ箔で包み、紫外線に被曝しないよう にした。太陽紫外線照射後のTLの測定は、熱蛍光線 量計測定器(TLD Reader Model 3000,Kasei Optonix, Ltd.)にポータブルマルチデターロガー(ZR-RX20, Omron Co.)を組み合わせて改良した装置を用い、毎 分20℃の昇温速度でTLを測定した。地表での太陽紫

Fig.2 測定用石英製容器とTLD試料

外線は,紫外線強度計(UVR-250:220~300nm,Topcon Co.)を用いて測定した。また今回, DOの測定には,溶存酸素計(YK-22DO, Kenis Co.)を用いて測定した。

3. 測定結果と考察

Fig.3に砂溜池の堤(地表)での直射日光をCaF₂: Tb,Sm,Gd焼結体(TLD)素子に1時間 照射した後,測定したTLグロー曲線を示す。

横軸は,測定開始からの時間を示し,縦軸は測定開始からの試料加熱温度を示している。また,試料からの発光強度も縦軸に示されている。

Fig.3 TLグロー曲線(太陽光1時間照射)

Fig.3から、温度曲線から室温より400℃まで一定の毎分20℃の昇温速度でTLが測定されて

いること,TLD素子のTLグロー曲線は,146℃付近に単一のピークを持つことが分かる。TL グローピークが1つであることから,TLD素子に照射された太陽紫外線量とTLグローピーク 強度が比例することが考えられる。

表1に砂溜池の堤(地表)において太陽紫外線強度計(UVR-250:220~300nm,Topcon Co.)で測定した値とTLD素子で測定したTLグローピーク強度を示す。なお、太陽紫外線を照 射し始めた13時と測定終了時での太陽紫外線強度(μ W/m²)が変化するため、おおよその平 均値を求めた太陽紫外線量(μ W·h/m²)とTLグローピーク強度(V)との関係を示す(TLピー ク強度は、光の明るさを測定している光電子倍増管の出力端子間の電圧Vで与えられる)。

測定日	太陽紫外線量(地表: µW・h/m)	TLグローピーク強度 (V)
6月18日	268	2.08
6月25日	220	1.567
7月13日	315	8.193
7月24日	230	7.111
7月30日	215	4.992
8月12日	209	2.394
8月21日	242	4.134
9月4日	279	2.223
9月11日	257	6.43
9月18日	131	1.501
10月9日	150	0.684
10月23日	169	1.966
11月5日	143	3.835
11月20日	108	2.33

表 1. 太陽紫外線量 (μW・h/m) とTLグローピーク強度 (V)

表1の関係をグラフに表した結果, Fig.4に示すように, 今回用いたTLD素子が2種類の異 なった感度を持つことが明らかとなった。これは, TLD素子は, CaF2粉末にTb4O7, Sm2O3, Gd2O3粉末をそれぞれ0.06wt%, 0.03wt%, 0.36wt%の仕込み濃度で添加し, 乳鉢の中で撹拌 したものを円板状に加工した後,電気炉内で焼結させるという手作り作業でつくられたために, 仕込み濃度の通りの配合でTb, Sm, GdイオンがCaF2内に分布していないことによるもので ある。太陽紫外線測定前に, CaF2: Tb,Sm,Gd焼結体に低圧水銀灯紫外線を照射し, 照射後測 定したTL強度がほぼ等しいCaF2: Tb,Sm,Gd焼結体をTLD素子として選んだが, 結果として, 2種類の異なった感度曲線をもつ, TLD素子で測定することとなった。しかし, それぞれの 感度曲線から太陽紫外線被曝量をTLグローピーク強度から導き出せることから, 砂溜池での 水深1m. 1.3mでの太陽紫外線量の季節的変化を求めることとした。

Fig.4 太陽紫外線量とTLグローピーク強度との関係

Fig.5 地表と砂溜池の水深1mでの太陽紫外線量の季節変化

Fig.5は、地表での太陽紫外線量と砂溜池の水深1mでの太陽紫外線量の季節変化を示した ものである。測定した日の天候によって太陽紫外線量が変化していること、地表での季節変化 として7月末をピークに8月、9月、10月と減少していることが分かる。これは、一般に知 られていることと一致している。一方、水深1mでの太陽紫外線量は、地表に比べて22.6%~ 77.2%であるが、平均して47.9%である。測定回数と天候などの制約のある条件下ではあるが、 季節変化として6月後半から7月初頭に最大になると思われる。

今回,砂溜池で水深1.3mにおいても30分間,太陽紫外線量を測定したので,1時間当たり の線量に換算して,水深1mと1.3mでの太陽紫外線量の季節変化を比較したものをFig.6に示 す。Fig.6において,5月には地表での太陽光紫外線強度計による測定は行っていないが,水 深1mと1.3mでは,TLD素子による測定を行っていたので,感度曲線より求めた値を用いてい る。なお,TLD素子の感度の違いによる値の6月~11月までの採否は,地表の太陽紫外線強度と 比較して決めたものであり,5月については6月のそれぞれの値との比較から求めたものである。 Fig.6からは,5月において差は見られるが,6月以降はあまり差が無く,砂溜池の水中1m~1.3m における太陽紫外線量の季節変化は,7月初頭から中旬ごろにかけて最大190µW・h/㎡程度の 太陽紫外線量になると予想され,地表での太陽紫外線量315µW・h/㎡の60%程度の紫外線量 を受けていることが明らかとなった。

砂溜池での地表の気温と水中での水温の季節変化をFig.7に示す。気温と水温の差は,6月 から11月初旬までは,およそ2℃~5℃の範囲であった。この気温の季節変化は,地表での太 陽紫外線量の季節変化(Fig.5)に対応していることが分かる。

Fig.7 砂溜池での地表での気温と水中での水温の季節変化

今回,水質との関係を調べるため,溶存酸素DOについても測定した。砂溜池の水中での太 陽紫外線量の季節変化ではFig.6から,7月下旬から8月初めにピークが観測されると考えら れるが,Fig.7の気温変化では6月18日のように36.5℃と非常に気温の高い日もあったが,8 月中旬頃にピークがあると考えられ,9月から気温が下がっている。この気温の変化に応じて 水温も変化している。この水温とDOの季節変化をFig.8に示す。Fig.8において,9月11日以 降の水温の下降に応じて,DOの値が上昇していることが分かる。水温の下降とともにDO値が 上昇することは知られていることではあるが,今回の測定でも確認された。

また,四条畷市が発行している「なわての環境」平成21年度版に記載されている砂溜池に近

い地点の権現川(市水道局権現取水場)での水温とDOの測定値を表2に示す。表2の権現川(市 水道局権現取水場) での5月から11月までのDO測定値の変動範囲10~11(mg/ℓ)と砂溜池の6 ~10(mg/ℓ)とは、川と貯水池の違い、また測定回数に違いがあり単純に比較できない。

	水温 (℃:午前)	水温(℃:午後)	DO (mg/ℓ:午前)	DO (mg/ℓ:午後)
平成20年5月7日	16.5	16.0	10	10
平成20年9月8日	23.0	22.5	9.2	9
平成20年11月10日	12.0	12.5	11	11
平成21年2月16日	8.0	7.0	12	13

表2. 権現川(市水道局権現取水場)での水温とDO測定値

一方,砂溜池の水深1.3mにおける太陽紫外線量(UV-Bの照射エネルギー)とDOとの関係 をFig.9に示す。水中での太陽紫外線量がピークとなる7月13日にDO値が最低値の5.65mg/ となっており、その後の太陽紫外線量とDO値の変化は全く対照的に変化している。6月から 7月後半にかけてみられるDOの下降曲線は、水温と水中の生物の活動と関係しているが、太 陽光スペクトル中の太陽紫外線量の変化は、光合成に関与する可視光線と赤外線(熱)領域の 変化でもあるので、水温と水中の生物の活動と関係しているDO値の変化は、太陽光線量およ び水温の変化から予想することができると思われる。そして、実際に水中に届いている太陽光 が、水生植物類(植物性プランクトン、藻類)の光合成に関係していることから、測定水中域 での太陽光と水生植物類の繁殖について、検討する際に水中での太陽紫外線量の季節変化が役 立つものと考えられ、その際、太陽紫外線量(UV-Bの照射エネルギー)が水生植物等に与え る影響についても検討する必要がある。

Fig.9 砂溜池における太陽紫外線量とDOの季節変化

今回,ジュンサイの絶滅に関係した,ハゴロモモ,オオカナダモなどが,7月後半,陸上の 太陽紫外線量(最大315µW・h/m)の60%に当たる190µW・h/m付近の太陽紫外線量を水 深1.3mで受けていることが,明らかとなった。また,貯水池での地表の気温および水温の上 昇ピークが8月上旬に現れるにも関わらず,水生植物類などの繁殖の影響を受けて,1.3mの 水中での太陽紫外線量は8月上旬から減少しており,気温および水温の変化との間に差異が認 められる。

4. 結論

以前の研究では水中,および地表での太陽紫外線量を任意単位での季節変化しか述べられな かったが,TLD素子の太陽紫外線に対する感度曲線から太陽紫外線量を具体的なエネルギー 量µW・h/mを用いて,比較できることが明らかとなった。

今回の測定の結果,砂溜池における水中1m~1.3mでの太陽紫外線量の季節変化は,7月初 頭から中旬ごろにかけて最大190µW・h/m程度の太陽紫外線量になると予想され,地表での 太陽紫外線量315µW・h/mの60%程度の紫外線量を受けていることが明らかとなった。また, 6月から7月後半にかけてみられるDOの下降曲線については,太陽光量および水温の変化か らも予想できると考えられる。また,実際に水中に届いている太陽光が,水生植物類(植物性 プランクトン,藻類)の光合成に関係していることから,測定水中域での太陽光と水生植物類 の繁殖について,検討する際に水中での太陽紫外線量の季節変化が役立つものと考えられるが, その際,対象とする水生植物に与える太陽紫外線量(UV-Bの照射エネルギー)の影響につい て検討しておく必要があると思われる。

ジュンサイの移植のために行った水槽でのジュンサイと水質 (pH, DO, 電気伝導率など) との関係を調べた予備試験において, 電気伝導率 (導電率) が大きく影響することが明らかと なったので (池田 他 2010), 今後, pH, DO, とともに砂溜池の電気伝導率, TN (全窒素), TP (全リン) などの季節変化と比較, 検討し移植を試みたいと考えている。

謝辞

砂溜池での測定に関して、むろいけ園地の"森の工作館"の久保勝範館長にご協力を得ましたのでお礼申し上げます。また、Reviewerの方から適切な助言を頂きましたことにお礼申し上げます。

参考文献

 H. Hama-Inaba, K. H. Choi, B. Wang, K. Haginoya, T. Yamada, I. Hayama and H. Ohyama, J.Radiat. Res. 42, 201 (2001).

- 2. M. Bala, A. K. Sharma and H. C. Goel., J.Radiat. Res. 42, 285 (2001).
- 3. J. Hidema, I. T. Song and T. Kumagai, J.Radiat. Res. 42, 295 (2001).
- 4. J. Kim, V.G., Petin and G. P. Zhurakovskaya., J.Radiat. Res. 42, 361 (2001).
- H. Ohtaki, H. Kido, A. Hiratsuka, Y. Fukuda and N. Takeuchi, J. Mater. Sci. Lett., 13 1267 (1994).
- Y. Fukuda, H. Ohtaki, A. Tomita and S.Owaki., Radiat. Prot. Dosim., 65, Nos. 1-4, 325 (1996).
- Y. Fukuda, T. Tanaka and Y. Kutomi, Scientific Reports of Opole Univ. No. 240, 20, 43 (1997).
- 8. 福田和悟, 稲部勝幸.,「放射線」Vol. 24, No. 2, 45 (1998).
- 9. Y. Fukuda, A. Tomita., Radiat. Prot. Dosim., 84, Nos. 1-4, 269 (1999).
- 10. S. Awata, T. Tanaka and Y. Fukuda, phys. status solidi (a) 174, 541 (1999).
- Y. Fukuda, T. Tanaka., Latvian Journal of physics and Technical Sciences, 6, supplement, 155 (2000).
- 12. Y. Fukuda., Radiat. Prot. Dosim., 100, Nos. 1-4, 321 (2002).
- 13. Yasunori Fukuda., J. Radiat. Res., 43, supplement s67 (2002).
- 14. 福田和悟., 大阪産業大学論集 人間環境論集4,1 (2005).
- 15. Y. Fukuda and Niwa., Radiat. Prot. Dosim., 119, Nos. 1-4, 153 (2006).
- 16. Y.Fukuda., Radiat. Meas. 43. 455 (2008).
- 17. 福田和悟., 大阪産業大学論集 人間環境論集 8, 1 (2009).
- 18. 池田賢弘, 福田和悟, 久保勝範., 環境技術学会 第10回研究発表大会予稿集pp.86-87, (2010).