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Area of a cellular complex in a hyperbolic 3-manifold

ICHIHARA Kazuhiro

Abstract

We give upper bounds on the area of certain 2-dimensional cellular complexes
geodesically embedded in hyperbolic 3-manifolds.
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1 Introduction

In this paper, we consider a 2-dimensional cellular complex geodesically embedded in a
hyperbolic 3-manifold M and study its area defined as the sum of the area of its 2-cells.
Such an object, for instance, comes from the boundary of a Dirichlet polyhedron, called
Dirichlet complex; if M is closed. When M has totally geodesic boundary OM, another
example is given by the cut locus with respect to OM. Both are often used to study
hyperbolic 3-manifolds and kleinian groups, and, in this paper, we give upper bounds on the
area of such complexes if they are generic.

First we consider the case where M is a closed hyperbolic 3-manifold. As usual, we
identify the universal cover of M with 3-dimensional hyperbolic space H’. Fix a point z in
M and a lift # of z in H®. Then the Dirichlet complez D, of M (with center z) is defined as
the set of pbints in H® closer to # than to vZ for any v € I, where I" denotes the covering
transformation group. This becomes a convex fundamental polyhedron for I" with a finite
number of totally geodesic sides (see [6] for example). The image of the boundary 6D,
under the covering projection gives a 2-dimensional cellular complex geodesically embedded
in M, which we call a Dirichlet complex with respect to x.

A Dirichlet polyhedron D, is called generic if the polyhedral decomposition of H? obtained
from all translates of D, under I is dual to some triangulation of H®. We say that a Dirichlet

complex is generic if the corresponding Dirichlet polyhedron is generic.
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Then our first theorem is the following:

Theorem 1.1. Let M be a closed hyperbolic 3—-manifold and C a Dirichlet complex in M.
Suppose that C is generic. Then Area(C) < 7 (v—2) holds, where v denotes the number of
the O—cells of C.

The following is an immediate corollary of the theorem above.

Corollary 1.2. Let M be a closed hyperbolic 3—-manifold and D, a Dirichlet polyhedron of
M. Suppose that D, is generic. Then Area(0D,)<2m (v/4—2) holds, where v denotes the
number of the vertices of D, .

proof. Let C be the generic Dirichlet complex in M corresponding to D, . Note that each two
faces of D, are glued together in M by covering projection. Thus Area (9D, )=2Area(C)
holds. Also note that each four vertices of D, are glued together in M since D, is generic.
Thus the number of the vertices of D, is equal to that of the O-cells of C' multiplied by four.

Therefore this corollary follows from Theorem 1.1. L]

Remark that it was shown in [4] that Dirichlet polyhedra are generic for almost all points
in M.

Also, by definition, we obtain the following immediately.

Corollary 1.3. For every point z in a closed hyperbolic 3-manifold, there exists a point y
arbitrary close to x such that there exist more than two points each of which is connected by

four distinct minimal geodesic segments to y. L]

The existence of such points in a compact, non-positively curved Riemannian manifold is
known [3] and generically these are only finite many. In general, there exist uncountably
many points each of which is connected by at most three distinct geodesic segments to the
given point.

Next, in the case that M has non-empty totally geodesic boundary OM , we consider the
cut locus (with respect to M ), which is defined as the set of points in M admitting at least
two distinct shortest paths to 8M . This becomes a geodesic, convex 2-dimensional cellular

complex embedded in M. See [5]. Remark that the canonical decomposition of M is defined
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as the geometric dual to C in [5]. Then we obtain the following:

Theorem 1.4. Let M be a compact hyperbolic 3-mani fold with non-empty totally geodesic
boundary OM and C the cut locus with respect to OM . Suppose that the canonical
decomposition of M consists of t truncated tetrahedra. Then Area(C)< tn+ 1/2 Area(OM )
holds. Moreover Area(C) < 3wt holds.

2 Area of geodesic cellular complex

We start with an observation about the area Area(C) of a hyperbolic 2-dimensional
cellular complex C. We say that C is hyperbolic if there are identifications of closed 2-cells
of C with convex polygons in H? which match isometrically along 1-cells of C.

Let n; be the number of the i-cells of C for ¢ =0, 1, 2 and o,, o,,.., 0,, 2-cells of C. Then

Area(C) = ZArea,(Ui) holds. It follows that

i=1

Area(C) = 22: ((m; —2)m —6;) |
i—1

= 3 m,7r — 2N, — 3 0; |,
() -zmr— (S0

where m, denotes the number of internal angles of o; and 6; the sum of the internal angles
of o; for 1 < i < n,.
Moreover, if C is generic, in the sense that the link of each 0-cell is isomorphic to the

complete graph of order 4, then we have X72;m; =3n,. Thus we obtain

Area(C) = (3n, — 2n,) m — i g,. (1)

Now we consider a 2-dimensional cellular complex C geodesically embedded in a
hyperbolic 3-manifold M. That is, each 1-cell and 2-cell of C is a geodesic segment and a
totally geodesic polygon in M respectively. We will always assume that such a complex is
convez, ie., each closed 2-cell is a convex polygon in M. Obviously it can be regarded as a
hyperbolic 2-dimensional cellular complex.

Among such cellular complexes, as we stated in the previous section, we will focus on
some particular ones, which is shown to have the following geometric properties. We say
that a 2-dimensional cellular complex C geodesically embedded in M is global in the link of
each point if any ball neighborhood of each point in C with boundary S satisfies that the
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intersection SN C'is not contained in any open hemisphere of S.

In this case, we have the following estimate on the area.

Theorem 2.1. Let M be a hyperbolic 3-manifold and C a generic 2-dimensional cellular
complex geodesically embedded in M. Suppose that C is global in the link of each point.
Then we have

—271x(C) < Area(C) < nom — 2mwx(C),
where X(C) denotes the Euler characteristic, Area(C) the area and m, the number of 0-cells
of C.

Remark that the inequality still holds if C'is an image of a cell-wise embedding instead of
an embedding.

To prove Theorem 2.1, we prepare a lemma about an embedding of the complete graph
K, of order 4 into the 2-dimensional sphere S°. In the following, S* is assumed to have the
Riemannian metric of constant curvature +1.

As usual, we regard a finite graph as a 1-dimensional cellular complex by setting a vertex
as a O-cell and an edge as a closed 1-cell. Given an embedding f of a finite graph into a
surface, its image G is naturally identified with the original graph, and so the image of a

vertex and an edge by fis said to be a vertex and an edge of G.

Lemma 2.2. Let G be the image of an embedding of K, into S ? Suppose that
(1) ‘each edge of G is a shortest geodesic arc on S* connecting its endpoints, and
(2) G is not contained in any open hemisphere.

Let E be the sum of the lengths of the edges of G. Then 37 <E < 47 holds.

This is an almost immediate consequence of the result obtained by Gaddum in [2]. In the

next section, we will give an elementary proof of Lemma 2.2.

Proof of Theorem 2.1. We use the same notations as in the previous observation. Let us
consider the small ball neighborhoods for all 0-cells of C, and identify each of their
boundaries with the unit 2-sphere S* The intersection of such a sphere and C yields a
1-dimensional cellular complex, regarded as a graph, embedded in S% In this setting, we
note that the sum of lengths of the edges for all such graphs is equal to the sum of internal

angles for all 2-cells of C.
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Now, the assumption on C guarantees that Lemma 2.2 can be applied to all such graphs.

Thus, from Equation (1), we obtain
3n,m — 2n,m — 4nyw < Area(C) < 3n,m — 2n,m — 3n,em.
Since C is generic, we have n,=2n,, and so
Area(C) > 2n,m — 2n,m — 2n,m = —27wx(C)
and

Area(C) < 2n,m — 2n,m — 2o + N = Mo — 270X (C)

hold. ]
We remark that the results corresponding to Theorem 2.1 can be obtained for spherical
manifolds. In this case, all inequalities are reversed. The proof can be done in the same way,

and so we do not include it here.
3 Geodesic graph on the 2-sphere

In this section, we give a proof of Lemma 2.2. Let us start with recalling fundamentals of
spherical geometry. Let u,, u,, u; be points on S* such that no two of them are antipodal and
no great circle includes all the three points. Let A; be the closed hemisphere whose
boundary contains the other two points than w;, and whose interior contains u; for ¢ =1,2,3.
The spherical triangle A with the vertices u,, u, u; is defined as the intersection

Ay N Ay N As. Then we have the following:

e A is conveg, Le., any pair of points in A is connected by a geodesic arc in A. Moreover
the arc is shortest among the arcs connecting the points, and the length is equal to the
spherical distance between the points which is strictly léss than «.

e The length of an edge of A is less than the sum of the lengths of the other two edges
(the triangle inequality).

Proof of Lemma 2.2 Let v, vy, v;, v, be the vertices of G. Let e; denote the edge of G
connecting v; and v, for 1 <14, j< 4. Note that the assumption (1) implies that the length of
e;; s equal to the spherical distance d;; on S* between v, and v; for 1 <14, j< 4. Thus it suffice

to show that
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3r < Z d,; < 4m.

1<i<j<4

In the following, the antipodal point of v; is denoted by v, for 1 < ¢ < 4. Also d;; denotes
the spherical distance between v; and v; for 1 < 4,7 < 8.

First we consider the case that a couple of the vertices, say v, and v, are antipodal,
equivalently, d,, = w. This implies that d;; + d3,=d,+dy= mwholds. Together with 0< d, < 7,
we have 37 < 3 Jicicjcqdij =4m-

Next consider the case that all the four vertices are contained in a great circle. Suppose
for example that v, v,, vs, v, lies in a great circle T" in this order. Since G is the image of an
embedding, the edge e;; is not contained in I'. This implies that e;; is a half of a great circle
and di;=m. Also we see that dy=m and so we obtain > ;<;< <4 dij = 4.

Thus, in the following, we assume that d; #7 for 1 < 4, j < 4 and at most three
vertices of G lie on a great circle.

Next consider the case that three vertices are contained in a great circle. Suppose for
example that v,, v, and v, lie on a great circle. Then, by the triangle inequality, we have dy
+dp>dyy, dyp+ di>dyy and dg +dy>dy . These are added to obtain

2(dy+d, +dy)>dy,+dy+dy=27.
Thus

Z dij = (d41 + d42 + d43) + dlg + dgg + d31 > + 27'(' == 37T

1<i<j<4
In the same way as above, we have dt+d+d,>7. Since d;= 7 = dy.g for 5 =1, 2, 3,

Z dij = (day + duz + dus) + dip + dos + das

1<ics<d
=37 — (dys + dus + dur) + diz + dos + dss
<3m—7m+2n =A4nw

holds.

Finally we consider the case that the four vertices are in a general position: We assume
that d;;# 7 for 1 < 4,5 < 4 and at most two vertices of G lie on a great circle. This means
that for any three of the points there is a triangular face which includes the three points as
vertices.

Then, by the triangle inequality, we have dg;+ dg; >dsg, dsy + dgy >dse, and dss +ds, >d34 and
des + dg, > ds,. Add these to obtain

d53 + d63 + d54 + d64 > d34 + d56 .
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Here note that d; = © - dgy; for i =5, 6, j =1, 2, 3, and dys = dy,. These imply that
4 — (d13 + d23 + d14 + d24) >d34 + d12-
Consequently we have
dr> > dy.
1<i<j<4

In the following, let A be the spherical triangle bounded by e, €53 and es;.
Claim 1. The antipodal point vg of v, is included in the interior of A.

Proof. Let T'; be the great circle including an edge of Abut not including v; for < = 1, 2, 3.
By the assumption above, v, and hence vz never lie on I'; UL, UT;. Note that I' UT, UT,
decomposes S” into eight spherical triangles.

Assume for a contradiction that vg is not included in the interior of A. Then v, is included
in the interior of one of the seven spherical triangles other than the antipodal image of A.
This implies all the four points v,, v, v; and v, are included in the closed hemisphere
bounded by one of I';, I'; or I';. Since the four vertices are assumed in a general position,
there is an open hemisphere which contains whole G. This contradicts the assumption (2)

of the lemma. U
Claim 2. The inequality dy, + dy; +di; > dg + dgy + dgg holds.

Proof. Since the length of each edge is less than 7, and by Claim 1, the edge e,; intersects
the great circle including v, and vg at just one point v, Let dy or d, denote the distance
between v; and v, for 1 < z < 8. The distance d,, is realized by a geodesic arc included in
e;; and also is dg;. Thus d;; = dyy + dg; holds.

The distance d is realized by a geodesic arc ey, in A since A is convex. In particular, the
arc ey contains vg and so dyy = dygt dge holds.

Together with the triangle inequality di, + dig > dye and degt dgg > dgs, we conclude

dyy + dyy = dyy+ dygt dog>dogt+ dog= dyst dogt dgz> dog + .
In the same way, we have dy+ dy> dg+ dgs and dg+ dg> dgt+ dy,.
By adding these inequalities, we obtain

d12 + d23 + d3l > d81 + d82 + d83 .
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Together with the equations dg; = m —d,; for j = 1, 2, 3, we conclude that

Z d; >3m— Z drg -

1<i<i<3 1<k<3

This completes the proof. | L]
4 In a hyperbolic 3-manifold

Here we give proofs of the theorems stated in the first section.

4.1 Boundary of Dirichlet polyhedron

Here let M be a closed hyperbolic 3-manifold and regard H® as the universal cover of M.
Proof of Theorem 1.1 Let p: H> —M be the covering projection and D, a generic Dirichlet
polyhedron such that C = p(8 D,). Since D, is a convex polyhedron, M —C is locally convex
at C, which means that C is global in the link of each point. By definition, if D, is generic,
then C is also. Thus we can apply Theorem 2.1 to this C, and then Area(C)< vr — 271 X(C)
is obtained. Note that X (C)=X (M)+1 = 1 holds, where X (M)denotes the Euler character-
istic of M, which is 0. This completes the proof of Theorem 1.1. []

4.2 Cut locus
Next let M be a compact hyperbolic 3-manifold with non-empty totally geodesic boundary
0 M. Then the cut locus C with respect to 0 M is shown to be geodesic, convex and global

in the link of each point as follows.

Lemma 4.1. Let M be a compact hyperbolic 3—-mani fold with non-empty totally geodesic
boundary & M and C the cut locus with respect to 0 M. Then C is geodesic, conver and global
in the link of each point.

Proof. We can assume that the universal cover of M is a subspace embedded in H® LetC
be the preimage of C by the covering projection. Take a connected component N of H*— ¢
and let P be the intersection of N with the preimage OM of OM .

Consider the middle fences of the short cuts between P and any other components of OM .
Then N appears as the intersection of the half spaces bounded by such middle fences, that
is, N is a convex polyhedron in H®. This implies that each face of N, which is isometric to a
2-cell of C, is a convex totally geodesic polygon. Also this means the complement of C in M

is locally convex, and it implies that C is global in the link of each point. L]
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Proof of Theorem 1.4. Let n, be the number of the i-cells of C for i=0, 1, 2. Recall that the
canonical decomposition of M is the geometric dual to C. Moreover the number of 0-cells of
C is equal to the number of tetrahedra, that is, n, = ¢ holds. Then, by Lemma 4.1, we can
apply Theorem 2.1 and obtain Area(C) < n,m —27 X(C).

Since C is a spine [5], there exists a retraction of M onto C. By using this retraction, a
cellular decomposition of OM is induced from that of C. Let N; be the number of the i-cells
of OM for i=0, 1, 2 Then n, = 2n,y, 4ny = Ny, 3n; = N, and 2n, = N, hold in this setting. By
direct calculation, we have 2x(C) = x(0M), where x(0M) denotes the Euler characteristic
of &M . Thus the Gauss-Bonnet Theorem implies Area (C) < tw+1/2 Area(OM ).

The last statement of the theorem follows from the next lemma. []

Lemma 4.2. Let M be a compact hyperbolic 3-mani fold with non-empty totally geodesic
boundary OM . Suppose that the canonical decomposition of M consists of t truncated

tetrahedra. Then Area(OM ) < 4rnt holds.

Proof. As we remarked before, n,=2n,, 4n,=N,, 3n,=N; and 2n,=N, hold. Therefore the
Euler characteristic X of OM is 4n,— 6n,+2n,=2(n,—n,). Since n, is a positive integer, we
have- X <2n,. By the Gauss-Bonnet theorem, we have Area (M )=—-27X, and so Area(OM )

< 4mny=4nt is achieved. [l
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